Isotopic response of Pleistocene coccoliths to an ambient pCO₂ change: a calibration experiment

Camille Godbillot

Institut des Sciences de la Terre de Paris (UMR 7193 ISTeP), CNRS/Sorbonne Université – Paris, France. Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE – Aix-en-Provence, France. godbillot@cerege.fr

Fabrice Minoletti

Institut des Sciences de la Terre de Paris (UMR 7193 ISTeP), CNRS/Sorbonne Université - Paris, France

Franck Bassinot

Laboratoire des Sciences du Climat et de l'Environnement (UMR 8212 LSCE), CNRS/CEA/Université Versailles Saint Quentin – Gif sur Yvette, France

Michaël Hermoso

Laboratoire d'Océanologie et de Géosciences (UMR 8187 LOG), CNRS/Université du Littoral Côte d'Opale/Université de Lille/IRD – Wimereux, France

For geological periods where direct measurements of pCO_2 performed on ice cores are not possible, the reconstruction of this key paleoclimatic parameter can only be achieved through proxy data. Results from both *in vivo* cultures and cell modelling biogeochemical studies have demonstrated a link between the biological fractionation of coccoliths and the CO₂ concentration of the living environment of their producers, the coccolithophores. Changes in the CO₂ levels of the surface ocean also drive, on a geological timescale, the isotopic composition (vital effect) of Cenozoic coccoliths. These results have encouraged the use of coccolith vital effects as proxies for seawater CO₂ concentrations. However, a number of potential biases may hinder the application of the empirical calibrations from culture experiments to wild coccolith populations. This work formalizes a transfer function linking the vital effects of fossil coccoliths to the constrained values of Pleistocene [CO_{2aq}], with a view to develop a new tool to reconstruct older pCO_2 levels.

The calibration relies on the carbon and oxygen isotopic analyses of purified fractions of coccoliths from the North Atlantic core MD95-2037 across Termination II (ca. 140-130 ka). Using the alkenone-based sea-surface temperature (SST) record available at the site and atmospheric CO₂ concentrations from the Antarctic ice cores, we derived values for surface ocean CO₂ concentrations across the deglaciation. We quantified the changing magnitude of the vital effect of the coccoliths to the presumed forcing by CO₂ and formulated a transfer function between the two parameters. We evidence a control of CO₂ concentrations on the isotopic difference ($\Delta^{18}O$, $\Delta^{13}C$) between coccoliths of different sizes produced across the penultimate glacial-interglacial transition. We discuss the factors complicating the obtained relationship, including the effect of growth rate changes and/or air-sea disequilibrium. As a perspective to this work, we discuss the possible application of this calibration to more ancient periods in the Cenozoic, where direct measurements of *p*CO₂ are not available.