The Paleocene/Eocene boundary and emendation of the NP9/NP10 zonal boundary of Martini (1971)

Eric De Kaenel

DPR, Chemin sous la Roche 4b, 1185 Mont-sur-Rolle, Switzerland. edekaenel@bluewin.ch

David Bord

Ellington Geological Services, 1414 Lumpkin Road, Houston, Texas 77043, USA

James J. Pospichal

BugWare Inc., 1615 Village Square Blvd, Ste. 8, Tallahassee, Florida 32309, USA

The reference section for the Paleocene/Eocene boundary (GSSP: Global Standard Stratotype-section) is the Dababiya quarry near Luxor in Egypt. This section is considered the most complete Upper Paleocene to Lower Eocene sequence representative of this boundary with a 2.83 m PETM (Paleocene-Eocene Thermal Maximum) interval (core and phase I intervals according to Röhl et al., 2007). A new analysis of this section based on 56 samples was undertaken in 2022. Samples were collected at 2 cm, 5 cm, and 10 cm by Khozyem et al. (2014). Samples were processed for calcareous nannofossils and prepared on glass slides according to the method (settling technique) described by De Kaenel & Villa (1996). Preservation of nannofossils is exceptionally good except for a 52 cm-thick dissolution interval (devoid of nannofossils) at the base of the PETM. Nannofossil simple diversity varies between 50 and 123 species below and above the barren interval. A total of 180 species were identified from the upper Paleocene to lower Eocene. No reworking was observed.

According to the standard nannofossil zonation of Martini (1971), the NP9/NP10 boundary is placed at the LO (lowest occurrence) of *Tribrachiatus bramlettei* and is usually used to approximate the Paleocene/Eocene boundary. Noting the exact position of the LO of *T. bramlettei* is problematic because of the difficulties in distinguishing specimens of genus *Tribrachiatus* (a triradiate structure superimposed on another trigonal structure) from those of the genus *Rhomboaster* (a cubic/rhombohedral form albeit a flattened or misshapen one) at the top of the PETM core/base recovery phase I intervals. Detailed observations of the structure and geometry of the inter-arms regions between spines are used here to distinguish these two genera, but do not allow precise placement of the NP9/NP10 boundary.

In the literature, the NP9/NP10 is placed within the PETM interval (e.g. Menini et al., 2022), at the base of the genus *Rhomboaster* (e.g. Bybell & Self-Trail, 1997) or well above the PETM interval (Aubry et al., 2000). Discrepancies are related to the position of the LO of *T. bramlettei* and the individual workers method for making (or not making) a distinction between it and *Rhomboaster*. In the Dababiya section, we observed the LO of the genus *Rhomboaster* (small cubic *R. cuspis*) at the base of the NCIE (negative carbon isotope excursion) and therefore at the Paleocene/Eocene boundary and the LO of the genus *Tribrachiatus* at the top of the NCIE. In order to clarify the position of the NP9/NP10 boundary, the following changes to the standard nannofossil zonation of Martini (1971) are introduced:

NP9 – *Discoaster multiradiatus* Zone - emended Definition: Interval from the LO of *Discoaster multiradiatus* to the LO of the genus *Rhomboaster*. Authors: Bramlette & Sullivan (1961) emended De Kaenel, Bord & Pospichal.

NP10 – *Tribrachiatus contortus* Zone – emended Definition: Interval from the LO of the genus *Rhomboaster* to the LO of *Tribrachiatus contortus*. Authors: Hay (1964) emended De Kaenel, Bord & Pospichal. These emendations will resolve discrepancies of the position of the NP9/NP10 and bring consistency among biostratigraphers working on the PETM interval. This boundary will be easier to recognize and would unify the stage and biozone boundaries.

References:

- Aubry, M.-P., Cramer, B.S., Miller, K.G., Wright, J.D., Kent, D.V. & Olsson, R.K. 2000. Late Paleocene Event chronology: Unconformities, not diachrony. *Bulletin de la Société Géologique de France* 171(3): 367-378.
- Bramlette, M.N. & Sullivan, F.R. 1961. Coccolithophorids and related nannoplankton of the Early Tertiary in California. *Micropaleontology* 1: 129–74.
- Bybell, L.M. & Self-Trail, J.M. 1997. Late Paleocene and early Eocene calcareous nannofossils from three boreholes in an onshoreoffshore transect from New Jersey to the Atlantic continental rise. *In*: K.G. Miller & S.W. Snyder (Eds.). *Proceedings of the Ocean Drilling Program, Scientific Results* **150X**, College Station, TX (Ocean Drilling Program): 91–110.
- De Kaenel, E. & Villa, G. 1996. Oligocene–Miocene calcareous nannofossil biostratigraphy and paleoecology from the Iberia Abyssal Plain. *In*: R.B. Whitmarsh, D.S. Sawyer, A. Klaus & D.G. Masson (Eds.). *Proceedings of the ODP, Scientific Results* 149, College Station, TX (Ocean Drilling Program): 79–145.
- Hay, W.W. 1964. Utilisation stratigraphique des Discoastérides pour la zonation du Paléocène et l'Eocène inférieur. Mémoires du Bureau recherches géologiques et minières 28(2): 885–889.
- Khozyem, H., Adatte, T., Keller, G., Tantawy, A.A. & Spangenberg, J.E. 2014. The Palaeocene–Eocene GSSP at Dababiya, Egypt-Revisited. *Episodes* **37**(2): 78–86.
- Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. *In*: A. Farinacci (Ed.). *Proceedings of the Second Planktonic Conference Roma 1970*. Edizioni Tecnoscienza Rome, 2: 739–785.
- Menini, A., Mattioli, E., Vinçon-Laugier, A. & Suan, G. 2022. Calcareous nannofossil biostratigraphy across the Paleocene-Eocene Thermal Maximum. *Newsletters on Stratigraphy* **55**(1): 69–97.
- Röhl, U., Westerhold, T., Bralower, T.J. & Zachos, J.C. 2007. On the duration of the Paleocene–Eocene thermal maximum (PETM). *Geochemistry, Geophysics, Geosystems* 8: Q12002.